

ANSI/EIA-364-D-2001 Approved: July 23, 2001

# EIA STANDARD

# Electrical Connector/Socket Test Procedures Including Environmental Classifications

EIA-364-D (Revision of EIA-364-C)

**JULY 2001** 



ELECTRONIC COMPONENTS, ASSEMBLIES & MATERIALS ASSOCIATION THE ELECTRONIC COMPONENT SECTOR OF THE ELECTRONIC INDUSTRIES ALLIANCE



#### NOTICE

EIA Engineering Standards and Publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards and Publications shall not in any respect preclude any member or nonmember of EIA from manufacturing or selling products not conforming to such Standards and Publications, nor shall the existence of such Standards and Publications preclude their voluntary use by those other than EIA members, whether the standard is to be used either domestically or internationally.

Standards and Publications are adopted by EIA in accordance with the American National Standards Institute (ANSI) patent policy. By such action, EIA does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the Standard or Publication.

This EIA Standard is considered to have International Standardization implication, but the International Electrotechnical Commission activity has not progressed to the point where a valid comparison between the EIA Standard and the IEC document can be made.

This Standard does not purport to address all safety problems associated with its use or all applicable regulatory requirements. It is the responsibility of the user of this Standard to establish appropriate safety and health practices and to determine the applicability of regulatory limitations before its use.

(From Standards Proposal Nos. 4555, 4555-1, & 4555-2, formulated under the cognizance of the CE-2.0 National Connector Standards Committee.)

Published by

©ELECTRONIC INDUSTRIES ALLIANCE 2001 Technology Strategy & Standards Department 2500 Wilson Boulevard Arlington, VA 22201

PRICE: Please refer to the current Catalog of EIA Electronic Industries Alliance Standards and Engineering Publications or call Global Engineering Documents, USA and Canada (1-800-854-7179) International (303-397-7956)

All rights reserved Printed in U.S.A.

中国可靠性网 http://www.kekaoxing.com

#### PLEASE!

#### DON"T VIOLATE THE LAW!

This document is copyrighted by the EIA and may not be reproduced without permission.

Organizations may obtain permission to reproduce a limited number of copies through entering into a license agreement. For information, contact:

Global Engineering Documents 15 Inverness Way East Englewood, CO 80112-5704 or call U.S.A. and Canada 1-800-854-7179, International (303) 397-7956

# CONTENTS

| Clause |                                 | Page |
|--------|---------------------------------|------|
| 1      | Introduction                    | 1    |
| 1.1    | Scope                           | 1    |
| 1.2    | Classifications                 | 1    |
| 1.3    | Applicable documents            | 2    |
| 2      | Requirements                    | 4    |
| 2.1    | Qualification                   | 4    |
| 3      | Qualification procedure         | 4    |
| 3.1    | Test sequence                   | 4    |
| 3.2    | Specimen size                   | 5    |
| 3.3    | Standard atmospheric conditions | 5    |
| 3.4    | Test specimen                   | 5    |
| 3.5    | Test specimen disposition       | 5    |
| 3.6    | Test data                       | 6    |
| 3.7    | Data measurement                | 6    |
| 3.8    | Test report                     | 6    |
| 3.9    | Sample distribution             | 6    |
| 3.10   | Detail test procedures          | 7    |
| 4      | Recommended test sequence       | 7    |
| 5      | Supplemental tests              | 12   |
| Figure |                                 |      |
| 1      | Minimum test plan flow diagram  | 9    |

# CONTENTS (continued)

# Table

| 1   | Class definitions                                               | 2   |
|-----|-----------------------------------------------------------------|-----|
| 2   | Equipment operating and environmental conditions                | 3   |
| 3   | Sample size                                                     | 10  |
| 4   | All environmental classes, additional tests                     | 12  |
| 5a  | Connector accessories (strain reliefs, hoods, cable clamps, etc | 13  |
| 5b  | Connector accessories (when metal shells are used)              | 13  |
| 6   | Environmental classes 3.0, A1.0, A2.0 and A5.0                  | 14  |
| 7   | Termination tests                                               | 15  |
| A.1 | EIA-364, IEC-512 and MIL-STD-1344 cross-reference               | A-1 |
| B.1 | EIA-364 to MIL-STD-1344 expanded cross-reference                | B-1 |

# Annex

| А | Test comparison cross-reference EIA-364, IEC-512 and MIL-STD-1344 |            |
|---|-------------------------------------------------------------------|------------|
|   | (informative)                                                     | A-1        |
| В | Test comparison expanded cross-reference EIA-364 and MIL-STD-1344 |            |
|   | (informative)                                                     | <b>B-1</b> |
|   |                                                                   |            |

Page

#### ELECTRICAL CONNECTOR/SOCKET TEST PROCEDURES INCLUDING ENVIRONMENTAL CLASSIFICATIONS

(From EIA Standards Proposal No. 4555, formulated under the cognizance EIA CE-2.0 Committee on National Connector Standards, and previously published in EIA-364-C.)

#### **1** Introduction

#### 1.1 Scope

This standard establishes a recommended minimum test sequence and test procedures for electrical connectors and sockets. This standard also includes administrative details and guidelines for connector/socket qualification and an annex for pertinent technical information.

#### 1.2 Classifications

1.2.1 It is intended that the environmental classifications as established provide a guide to develop test sequences that are intended to assure proper evaluation for each classification.

1.2.2 Classes according to the intended application are defined in table 1. The classes cover a broad range of environmental conditions starting with controlled indoor environments and progressing to more severe environments, e.g., vehicular, marine and airborne applications. Four levels of building and room environments are listed in order to differentiate between significant control techniques that may or may not be present (temperature, humidity and/or filtering techniques).

1.2.3 Environmental conditions for each class are shown in table 2. The temperature and humidity levels reflect the expected maximum equipment operating conditions.

# 1.3 Applicable documents

Standard test procedures of the EIA-364 series shall be applied as specified herein.

| Class                                                                                          | Definition                                                                           |  |  |  |  |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|--|
| number                                                                                         |                                                                                      |  |  |  |  |
|                                                                                                | General                                                                              |  |  |  |  |
| G1.0                                                                                           | Year-round filtered air conditioning with humidity control                           |  |  |  |  |
| G1.1                                                                                           | Year-round air conditioning (non-filtered) with humidity control                     |  |  |  |  |
| G1.2                                                                                           | Air conditioning (non-year-round) with no humidity control                           |  |  |  |  |
| (see note)                                                                                     |                                                                                      |  |  |  |  |
| G1.3                                                                                           | Without air conditioning or humidity control but with normal heating and ventilation |  |  |  |  |
| G2.0                                                                                           | With normal ventilation but uncontrolled heating and humidity                        |  |  |  |  |
| G2.1                                                                                           | Year-round exposure to heat, cold, moisture, industrial pollutants, and fluids       |  |  |  |  |
| G3.0                                                                                           | G3.0 Outdoor environment with moisture, marine and/or weathering conditions          |  |  |  |  |
|                                                                                                | Application specific                                                                 |  |  |  |  |
| A1.0                                                                                           | Aircraft environment (uncontrolled)                                                  |  |  |  |  |
| A2.0                                                                                           | Automotive (uncontrolled)                                                            |  |  |  |  |
| A3.0                                                                                           | Test sockets                                                                         |  |  |  |  |
| A4.0                                                                                           | Burn-in sockets                                                                      |  |  |  |  |
| A5.0                                                                                           | Space applications                                                                   |  |  |  |  |
| NOTE — For specific environmental test methodology to assess the performance of electrical     |                                                                                      |  |  |  |  |
| connectors and sockets used in business office applications that are no more severe than class |                                                                                      |  |  |  |  |
| number G.1.2; see EIA-364-1000.01.                                                             |                                                                                      |  |  |  |  |

# **Table 1 – Class definitions**

| Tuble 2 Equipment operating en in ommental conditions |                             |                      |                      |                      |
|-------------------------------------------------------|-----------------------------|----------------------|----------------------|----------------------|
| Class number                                          | Temperature<br>(see note 1) | Relative<br>humidity | Marine<br>atmosphere | Harsh<br>environment |
|                                                       |                             | (see note 3)         | Ĩ                    |                      |
| G1.0                                                  | +25 °C to +65 °C            | 40% to 60%           | No                   | No                   |
| G1.1                                                  | +25 °C to +65 °C            | 40% to 75%           | No                   | Possible             |
| G1.2                                                  | +25 °C to +85 °C            | 85% maximum          | No                   | Yes                  |
| (see note 2)                                          |                             |                      |                      |                      |
| G1.3                                                  | +15 °C to +85 °C            | 95% maximum          | No                   | Yes                  |
| G2.0                                                  | +5 °C to +85 °C             | 95% maximum          | No                   | Yes                  |
| G2.1                                                  | -40 °C to +100 °C           | 95% maximum          | Possible             | Yes                  |
| G3.0                                                  | -55 °C to +125 °C           | 95% maximum          | Yes                  | Yes                  |
| A1.0                                                  | -65 °C to +200 °C           | 95% maximum          | Yes                  | Yes                  |
| A2.0                                                  | -55 °C to +150 °C           | 95% maximum          | Yes                  | Yes                  |
| A3.0                                                  | +15 °C to +35 °C            | 85% maximum          | No                   | Possible             |
| A4.0                                                  | -65 °C to +200 °C           | 85% maximum          | No                   | Possible             |
| A5.0                                                  | -65 °C to +200 °C           | No                   | No                   | Possible             |
| NOTES                                                 |                             |                      |                      |                      |

Table 2 – Equipment operating environmental conditions

NOTES

1 The temperature limits as shown above are considered maximum limits. If the application within a classification requires limits other than those shown, said limits shall be specified in the referencing document.

2 For specific environmental test methodology to assess the performance of electrical connectors and sockets used in business office applications that are no more severe than class number G.1.2; see EIA-364-1000.01.

3 The values indicated are test conditions and not operating conditions.

#### 2 Requirements

#### 2.1 Qualification

Qualification sequences and severity levels shall be invoked by the referencing document. The referencing document shall reference the applicable class and the specific test sequences to be used for product qualification.

2.1.1 Qualification of a connect/socket series may be established by similarity through testing parts representing the maximum size or as defined by the qualifying agency. A series includes connectors/sockets and contacts of identical deign, spacing and configuration.

2.1.1.1 Similarity shall be granted for all sizes up to that level to which testing has been performed. Specimens for all sizes for which similarity is desired shall be submitted at the time of qualification.

2.1.1.2 Qualified contacts which have the same physical dimensional configuration, base material, plating type and thickness, material thickness in the engagement area except that the termination area has been changed (e.g. crimp, solder, IDC, etc.) shall be qualified with testing pertinent to the termination technique involved.

2.1.2 Following a connector/socket qualification, the manufacturer shall make no design changes, substitutions, material changes or process changes that affect from, or function, without full or partial requalification.

2.1 2 1 Requalification may consist of only those tests pertinent to the specific attributes that may be affected by said changes.

2.1.3 To successfully qualify or requalify a connector/socket series, test samples shall meet all the requirements as specified within the specified test groups. Deviation from the specified requirements may be granted only by the qualifying agency.

2.1.4 To successfully qualify, each specimen shall pass all the test requirements as specified for each test in the sequences indicated. No defects shall be allowed.

#### **3** Qualification procedure

3.1 Test sequence

3.1.1 The test specimens shall be subjected to the test sequence as shown in figure 1. The test sequence establishes the order of exposure to the environmental conditions, and the subsequent test parameters measured to determine adequate performance for each connector/socket class.

3.1.2 Specific tests may be added or deleted from the recommended sequence, supplemental and/or termination test s contingent on the specific application.

#### 3.2 Specimen size

3.2.1 The sample size shall be as specified in the referencing document. If not specified, each test group shall consist of the quantity of the test specimens shown in figure 1. Each specimen consisting of both mated halves with a full complement of contacts and shall include applicable hardware when appropriate.

3.2.2 The referencing document shall specify the number of data points to be monitored for each attribute. If not specified, 25% of the contact positions/specimen shall be measured but not fewer than 25. If there are fewer than 25 contact positions then all contact positions shall be measured. Additional specimens shall be added in order to obtain 25 data points for those situations when the number of positions are less than 25. When applicable, the positions measured shall be identified by a specimen identification and position number. All positions to be monitored shall be randomly chosen or as specified.

#### 3.3 Standard atmospheric conditions

3.3.1 Unless otherwise specified, all measurements shall be made within the following ambient conditions:

- Temperature: 15 °to 35 °C,
- Atmospheric pressure: 650 millimeters of mercury to 800 millimeters of mercury,
- Relative humidity 20% to 80%.

3.3.2 Special tests may require tighter control of conditions when specified in the test procedure.

#### 3.4 Test specimen

The test specimens shall be representative of the manufacturer's normal production and shall be selected at random. Each test specimen or part thereof shall be individually identified, such that the marking will not be destroyed throughout the test.

#### 3.5 Test specimen disposition

Following completion of the test program, test specimens should be packaged and retained by the testing facility or test sponsor for not less than one year unless otherwise specified in the referencing document. Unit identification and all test report identification shall be included in each package.

3.6 Test data

The results of each test shall be recorded as data. Details of failure or failure analysis shall be included.

3.7 Data measurement

Unless otherwise specified in the specific procedures used, measurements following an exposure shall be performed within 24 hours. Measurements shall be performed after the samples have recovered to room ambient conditions unless otherwise specified. The test specimens shall be handled in a manner so as not to disturb the contact interface. If measurements can be performed without handling of the test samples, then this procedure is preferable.

3.8 Test report

A test report shall be prepared by the test facility. Specimen preparation, schematics, photographs, etc. as applicable shall also be included. The test report shall contain a description (complete part number is acceptable) of the test specimens, summary of results, discussion of any test problems, a statement of conformance to requirements specified in the referencing document, test data as specified in the referencing document, and test descriptions which shall include procedures, test conditions, and requirement levels.

3.8.1 The following additional information should be included in the test report when qualifying to a specification which does not specify materials and/or plating thickness. Only those items not included in the specification shall be reported.

3.8.1.1 Plastic (generic type, color, glass content)

3.8.1.2 Contact material (CDA number)

3.8.1.3 Plating type and alloy, underplate, and thicknesses that were tested (actual data to be supplied in report)

3.8.1.4 Lubrication, if any (generic description)

3.8.1.5 Surface treatment, if any (generic description)

3.8.2 In the event a failure occurs, a failure report shall be issued and the qualifying agency notified. All specifics of the failure shall be recorded.

#### 3.9 Sample distribution

The specimens shall be separated into groups according to the applicable test sequence. Each group shall be tested according to the conditions indicated.

#### 3.10 Detail test procedures

Each test within a sequence shall reference the test procedure, test severities and requirements. In the event a specific test is required for which no established test procedure exists, said test shall be specified in the applicable referencing document.

#### 3.11 Calibration

Calibration requirements shall be in accordance with ANSI-Z-540.

#### 4 Recommended test sequence

4.1 The recommended minimum test plan flow diagram is shown in figure 1. The test plan as shown shall apply to all environmental classifications. The level of severity may change contingent on the application and/or classification involved. The applicable EIA-364 test procedures are listed in annex A.

4.2 The test sequences in figure 1 are recommended test sequences and may be modified by the referencing document for specific applications. Additional tests may be added to evaluate specific attributes that may be unique to the connector/socket class or application. Tests may be deleted in those instances where they may not be applicable to the application.

4.3 Contact resistance at rated current shall be used in those applications where the current levels are in excess of 100 milliamperes and the voltage levels are in excess of 3.0 volts.

4.4 Low level circuit resistance shall be used in those applications where the current levels are equal to or less than 100 milliamperes with the voltage level equal to or less than 3.0 volts and/or the product is used in conjunction with solid state logic.

4.5 Contact being monitored for electrical resistance shall be excluded from any test where voltages of 1.0 volts or greater may be applied (e.g., monitoring contact interruption, IR and/or DWV prior to measuring electrical resistance, etc.).

4.6 The referencing document shall specify if the test specimens are to be unmated after vibration, physical shock and salt spray for visual examination. If not specified, the test samples shall remain mated.

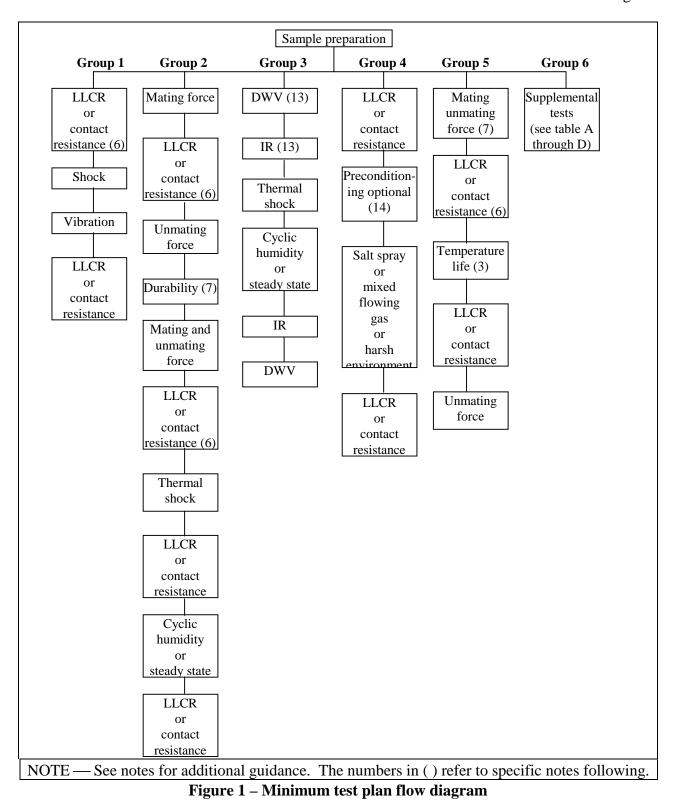
4.6.1 In performing failure mode analysis, specimens may remain mated, then potted and sectioned if so specified followed by examination.

4.7 One of two humidity tests shall be specified, steady state humidity or temperature cycling with humidity (preferred). Unless otherwise specified, insulation resistance shall be measured within 1 hour to 2 hours of removal from the test chamber.

4.8 Unless otherwise specified, when test boards are used, they shall be double sided, 1.59 mm (0.062 in) thick, glass epoxy, FR-4 with plated through holes.

4.8.1 When traces are involved, they shall be properly sized to minimize possible current heating effects. DWV and IR test shall not be performed on specimens mounted to test boards with traces.

4.8.2 DWV and IR requirements may have to be modified in the event that these tests are required with specimens mounted to test boards (without traces).


4.8.3 Test boards may have to be adequately protected when tested in humid environments under powered conditions.

4.8.4 The length of the test board shall be equal to the length of the test specimen plus 12.7 mm (0.50 in) minimum on each side.

4.8.4.1 The width of the test board shall equal the width of the test specimen plus 12.7 mm (0.50 in) minimum on each side.

4.8.4.2 For right angle terminations, the test board shall extend a minimum of 12.7 mm (0.50 in) from the appropriate row of terminations.

4.9 Fixturing for vibration and shock testing shall be defined in the referencing document.



#### NOTES

1 Sample size, see table 3

| Table 5 – Sample Size |                                                                 |  |  |  |
|-----------------------|-----------------------------------------------------------------|--|--|--|
| Sample size           | Description                                                     |  |  |  |
| Test group 1          | Four connector pairs (two for electrical resistance and two for |  |  |  |
|                       | monitoring contact interruptions)                               |  |  |  |
| Test group 2 – 5      | Two specimens each test group                                   |  |  |  |
| Test group 6          | To be specified in the referencing document                     |  |  |  |

 Table 3 – Sample size

- 2 The flow diagram as shown in figure 1 shall be considered as minimum for each environmental class. Additional tests or test groups may be required and shall be as specified in the referencing document. The levels of severity may differ contingent on the environmental class or application involved.
- 3 Temperature life may be performed with or without an electrical load being applied. It is recommended that for power applications where the current levels are in excess of 1.0 ampere, the use of an electrical load should be considered for inclusion. In this instance or unless otherwise specified, all positions shall have the load applied in accordance with EIA-364-17.
- 4 Test group 2 and 3: Cyclic humidity is preferred.
- 5 Test group 4: If more than one environment is required, each environment shall have its own independent sequence with its own test specimens.
- 6 If both contact resistance and low level circuit resistance are required, they shall be performed on different contact positions. In no instance shall they be performed on the same positions. Contingent on the number of positions within a specimen, additional specimens may have to be added to fulfill attribute monitoring; see 3.2.2.
- 7 For durability, mating/unmating force testing, applicable hardware, accessories and the like may be removed from specimens.
- 8 All test specimens for groups 1, 2, 4, 5 and 6 (as applicable) shall also be tested in a terminated or printed circuit board mounted state. Test group 3 shall be performed in an unmated, unterminated or unmounted state.
- 8.1 For connectors with crimp terminations used with rear sealing grommets, test group 3 may be performed in a terminated (crimped) state.

- 9 The following information shall be included in the test report:
  - Test board description,
  - Conductor size and type used (AWG and insulation) including number of strands,
  - Crimp tools used,
  - Termination technique and/or process used,
  - Additional special preparation performed.
- 10 See 4.1 through 4.9 for additional information. See annex A for applicable EIA-364 test procedure number.
- 11 The following schematics and test setups shall be described in the referencing document for each specimen configuration.
  - Voltage and current probe placement for resistance measurements,
  - Vibration/shock fixture or setup,
  - Temperature probe and placement when used.
- 12 Visual examination shall be performed on the test specimens initially and after each environmental and stress test. Unless otherwise specified, unmating of the test specimens shall not be permitted until completion of the test sequence.

There shall be no evidence of physical damage, swelling, blistering, distortion, etc. of the test specimens that prevents mechanical or electrical operation. Additional specific requirements, if required, shall be specified in the referencing document.

13 Unless otherwise specified, IR and/or DWV shall be tested between the closest spaced contacts (adjacent and/or between rows). DWV shall be performed at sea level and altitude for class A1.0 (aircraft).

Six contact pairs or 25% of the positions whichever is greater shall be tested per specimen.

In the event that hardware and/or metal shells are used, the test shall also be performed between the metal accessories and the contacts closest to them in accordance with EIA-364-20 and/or EIA-364-21.

14 Unless otherwise specified in the referencing document, preconditioning shall be defined as 25 mating and unmating cycles for connectors and 5 for sockets.

#### **5** Supplemental tests

The following tables list tests that are considered supplemental to the recommended test sequences. The tests, as shown, are recommended for inclusion as separate test groups as applicable and are not necessarily to be performed in a sequential manner unless so indicated or as added to the test sequences of figure 1. Only those specific tests of interest should be chosen. For additional test that may be required, see annex A listing all test procedures and applicable cross-reference.

| Test                                               | EIA-364        | Specimen size              |
|----------------------------------------------------|----------------|----------------------------|
|                                                    | test procedure |                            |
|                                                    | number         |                            |
| Current carrying capacity                          | 70             | One specimen mating pair   |
| Normal force                                       | 04             | Five contacts              |
| Porosity                                           | 53             | Ten contacts/style         |
| Solvent resistance                                 | 11             | Two specimens (unmated)    |
| Capacitance                                        | 30             | Ten pairs each spacing     |
| Contact retention                                  | 29             | Ten contacts/style         |
| Inductance                                         | 33 or 69       | Ten contacts/style         |
| Impedance                                          | 67             | Ten contacts/style         |
| Corrosivity                                        | 82             | Five specimens (unmated)   |
| Maintenance aging <sup>1</sup> )                   | 24             | 20% or 3 positions minimum |
| Contact Insertion and removal forces <sup>1)</sup> | 05             | 20% or 3 positions minimum |
| NOTES                                              |                |                            |

 Table 4 – All environmental classes, additional tests

1) For connectors with crimp removable contacts.

2 Flammability and fungus testing, need not be performed if applicable material certifications are supplied. In the event said certifications are not available, said tests shall be performed in accordance with the applicable procedures for flammability (EIA-364-81 or UL 490) and fungus (ASTM G 21).

| Test                                | EIA-364<br>test procedure<br>number |
|-------------------------------------|-------------------------------------|
| Cable pullout (cable clamps)        | 38                                  |
| Coupling thread strength (circular) | TBD                                 |
| External bending moment (circular)  | 43                                  |
| Safety holes                        | TBD                                 |
| Impact                              | 42                                  |
| Operating force                     | TBD                                 |
| Cover chain, tensile strength       | TBD                                 |
| Cable flexing                       | 41                                  |

#### Table 5a – Connector accessories (strain reliefs, hoods, cable clamps, etc.)

#### Table 5b – Connector accessories (when metal shells are used)

| Test                                                                              | EIA-364                     |
|-----------------------------------------------------------------------------------|-----------------------------|
|                                                                                   | test procedure              |
|                                                                                   | number                      |
| Magnetic permeability                                                             | 54                          |
| Shell-to-shell conductivity                                                       | 83                          |
| Insert retention                                                                  | 35                          |
| NOTES                                                                             |                             |
| 1 Shell-to-shell conductivity is recommended to be per<br>environmental exposure. |                             |
| 2 TBD indicates no existing EIA-364 test procedure exist                          | s within this document. The |

procedures for these tests shall be specified in the referencing document.

| Test                                  | EIA-364<br>test procedure<br>number |
|---------------------------------------|-------------------------------------|
| Acceleration (missile and A5.0)       | 01                                  |
| Air leakage (sealed)                  | 02                                  |
| Altitude immersion (A1.0 and A5.0)    | 03                                  |
| Fluid immersion (A1.0, A2.0 and A5.0) | 10                                  |
| Restricted entry (A1.0 and A2.0)      | 12                                  |
| Ozone (A1.0 and A5.0)                 | 14                                  |
| Contact strength (A1.0 and A5.0)      | 15                                  |
| Probe damage (A1.0 and A5.0)          | 25                                  |
| Firewall flame (A1.0)                 | 45                                  |
| Sand and dust (3.0 and A1.0)          | 50                                  |
| Ice resistance (3.0 and A1.0)         | 51                                  |
| Low temperature (A1.0 and A5.0)       | 59                                  |
| Lightning strike (A1.0)               | 75                                  |
| Outgassing (A5.0)                     | ASTM E 595                          |

Table 6 – Environmental classes 3.0, A1.0, A2.0 and A5.0

| Termination | Test                          | EIA-364   | Specimen size                   |
|-------------|-------------------------------|-----------|---------------------------------|
|             |                               | test      | •                               |
|             |                               | procedure |                                 |
|             |                               | number    |                                 |
| Crimp       | Crimp tensile                 | 08        | 20 contacts/wire size/wire type |
|             | Crimp deformation             | 07        | 10 contacts/wire size/wire type |
|             | Current cycling               | 55        | 10 contacts/wire size/wire type |
|             | Current carrying capacity     | 70        | 1 contact/wire size/wire type   |
| Solder      | Solderability                 | 52        | 20 contacts                     |
|             | Resistance to soldering heat  | 56        | 2 connectors                    |
|             | Terminal strength             | 62        | 10 contacts                     |
|             | Current cycling               | 55        | 10 contacts/wire size/wire type |
| Solderless  | Stripping force               | 16        | 10 contacts                     |
| wrap        | Unwrapping force              | 47        | 10 contacts                     |
|             | Terminal strength             | 62        | 10 contacts                     |
|             | Gas tight                     | 36        | 10 contacts                     |
| IDC         | Cable flexing                 | 40        | One connector                   |
|             | Reusability                   | 73        | TBD                             |
| Compliant   | Hole conditioning             | TBD       | TBD                             |
| pin         | Plated through hole integrity | TBD       | TBD                             |

# Table 7 – Termination tests

#### Annex

# A Test comparison cross-reference EIA-364, IEC-512 and MIL-STD-1344 (informative)

| Test                                   | EIA-364        | IEC 512        | MIL-STD-1344 |
|----------------------------------------|----------------|----------------|--------------|
|                                        | test procedure | test procedure | test method  |
|                                        | number         | number         | number       |
| Acceleration                           | 01             | ба             | 2011         |
| Air leakage                            | 02             | 14d (P)        | 1008         |
| Altitude immersion                     | 03             | 14e (P)        | 1004         |
| Normal force                           | 04             | None           | None         |
| Contact insertion, release and removal | 05             | 15d            | 2012         |
| force                                  |                |                |              |
| Contact resistance                     | 06             | 2b             | 3004         |
| Contact axial concentricity            | 07             | 16g            | 2001         |
| Crimp tensile strength                 | 08             | 16d            | 2003         |
| Durability                             | 09             | 9a             | 2016         |
| Fluid immersion                        | 10             | 19c            | 1016         |
| Resistance to solvents                 | 11             | None           | None         |
| Restricted entry                       | 12             | 16b            | None         |
| Mating and unmating forces             | 13             | 13b            | 2013         |
| Ozone exposure                         | 14             | None           | 1007         |
| Contact strength (bend)                | 15             | 16c            | None         |
| Stripping force (wrapped connectors)   | 16             | 16k            | None         |
| Temperature life with or without       | 17 (*)         | 9b             | 1005         |
| electrical load                        |                |                |              |
| Visual                                 | 18             | 1a             | None         |
| Torsional insert retention             | 19             | 15c            | None         |
| Withstanding voltage                   | 20             | 4a             | 3001         |
| Insulation resistance                  | 21             | 3a             | 3003         |
| Simulated life                         | 22             | None           | 1015         |
| Low level contact resistance           | 23             | 2a             | 3002         |
| Maintenance aging                      | 24             | 9d             | 2002         |
| Probe damage                           | 25             | 16a            | 2006         |
| Salt spray                             | 26             | 11f            | 1001         |
| Mechanical shock (specified pulse)     | 27 (*)         | 6с             | 2004         |
| Vibration                              | 28 (*)         | 6d             | 2005         |
| Contact retention                      | 29 (*)         | 15a            | 2007         |

| Table A 1 – EIA-364 | , IEC-512 and MIL-STD-1344 cross-reference |
|---------------------|--------------------------------------------|
|                     | , ILC 512 and MIL 51D 1544 cross reference |

# EIA-364-D Page A-2

| Table A.1 – EIA-364, IEC-512 and MIL-STD-1344 cross-reference (continued) |                |                |              |  |
|---------------------------------------------------------------------------|----------------|----------------|--------------|--|
| Test                                                                      | EIA-364        | IEC 512        | MIL-STD-1344 |  |
|                                                                           | test procedure | test procedure | test method  |  |
|                                                                           | number         | number         | number       |  |
| Capacitance                                                               | 30             | 22a            | None         |  |
| Humidity                                                                  | 31 (*)         | 11c and 11m    | 1002         |  |
| Thermal shock (temperature cycling)                                       | 32 (*)         | 11d            | 1003         |  |
| Inductance (100 nH - 100mH)                                               | 33             | None           | None         |  |
| Insert retention                                                          | 35             | 15b            | 2010         |  |
| Gas tight characteristics                                                 | 36             | None           | None         |  |
| Contact engagement and separation force                                   | 37 (*)         | 13a            | 2014         |  |
| Cable pull-out                                                            | 38             | 17c            | 2009         |  |
| Hydrostatic                                                               | 39 (*)         | None           | 1006         |  |
| Crush                                                                     | 40             | None           | 2008         |  |
| Cable flexing                                                             | 41             | None           | 2017         |  |
| Impact                                                                    | 42 (*)         | 7b             | 2015         |  |
| Cable clamping (bending moment)                                           | 43             | 17a            | None         |  |
| Corona                                                                    | 44 (*)         | 4b             | None         |  |
| Firewall flame                                                            | 45             | 20b            | 1009         |  |
| Microsecond discontinuity                                                 | 46             | 2e             | None         |  |
| Conductor unwrapping (solderless                                          | 47             | 16m            | None         |  |
| wrapped connectors)                                                       |                |                |              |  |
| Metallic coating thickness                                                | 48             | None           | None         |  |
| Not assigned                                                              | 49             |                |              |  |
| Dust (fine sand)                                                          | 50             | 11h            | None         |  |
| Ice resistance                                                            | 51             | None           | None         |  |
| Solderability of contact terminations                                     | 52 (*)         | 12a            | None         |  |
| Nitric acid vapor                                                         | 53             | None           | 1017         |  |
| Magnetic permeability                                                     | 54             | None           | 3006         |  |
| Current cycling                                                           | 55             | 9e             | None         |  |
| Resistance to soldering heat                                              | 56 (*)         | 12d            | None         |  |
| Temperature life (with mechanical                                         | 58             | None           | None         |  |
| loading for connectors with removable                                     |                |                |              |  |
| contacts)                                                                 |                |                |              |  |
| Low temperature                                                           | 59             | 11j            | None         |  |
| Porosity of contact finishes                                              | 60             | None           | None         |  |
| Terminal strength                                                         | 62             | 16f            | None         |  |
| Mixed flowing gas                                                         | 65             | 11g            | None         |  |
| EMI shielding effectiveness                                               | 66             | 23c (P)        | 3008         |  |

#### Table A.1 – EIA-364, IEC-512 and MIL-STD-1344 cross-reference (continued)

| Table A.1 – EIA-364, IEC-512 and          |                |                |              |
|-------------------------------------------|----------------|----------------|--------------|
| Test                                      | EIA-364        | IEC 512        | MIL-STD-1344 |
|                                           | test procedure | test procedure | test method  |
|                                           | number         | number         | number       |
| Transmission line reflections             | 67 (P)         | 23d (P)        | None         |
| Actuating mechanism                       | 68             | 8c             | None         |
| Inductance (10 nH - 100nH)                | 69             | None           | None         |
| Temperature rise versus current           | 70             | 5a and 5b      | none         |
| Solder wicking (wave solder technique)    | 71             | None           | 2019         |
| Hydrolytic effects                        | 72 (P)         | None           | None         |
| IDC reusability                           | 73 (P)         | None           | None         |
| Corona                                    | 74 (P)         | None           | None         |
| Lightning strike                          | 75             | None           | None         |
| Toxicity                                  | 76 (P)         | None           | None         |
| Solder cup strength                       | 77 (P)         | None           | None         |
| Cavity-to-cavity leakage bonding          | 78             | None           | None         |
| integrity                                 |                |                |              |
| Insert bond strength                      | 79             | None           | None         |
| Low frequency shield strength             | 80 (P)         | None           | None         |
| Combustibility characteristics of         | 81             | None           | None         |
| connector housings                        |                |                |              |
| Corrosivity of plastics                   | 82             | None           | None         |
| Shell-to-shell and shell-to-bulkhead      | 83             | 2f             | 3007         |
| resistance                                |                |                |              |
| Not assigned                              | 84             |                |              |
| Wear and mechanical damage of contact     | 85             | None           | None         |
| finishes                                  |                |                |              |
| Polarizing/coding key overstress          | 86             | 13e            | None         |
| Nanosecond event detection                | 87             | None           | None         |
| Residual magnetism                        | 88             | 24a            | None         |
| Space applications of connectors          | 89             | None           | None         |
| Crosstalk ratio                           | 90             | 25a (P)        | None         |
| Dust                                      | 91             | None           | None         |
| Wire bending for insulation displacement  | 92             | None           | None         |
| contacts                                  |                |                |              |
| Repeated wire connection and              | 93             | None           | None         |
| disconnection for insulation displacement |                |                |              |
| contacts                                  |                |                |              |

#### Table A.1 – EIA-364, IEC-512 and MIL-STD-1344 cross-reference (continued)

#### EIA-364-D Page A-4

| Table A.1 – EIA-364, IEC-512 and          | d MIL-STD-1344 | cross-reference | (continued)  |
|-------------------------------------------|----------------|-----------------|--------------|
| Test                                      | EIA-364        | IEC 512         | MIL-STD-1344 |
|                                           | test procedure | test procedure  | test method  |
|                                           | number         | number          | number       |
| Transverse wire extraction force for      | 94             | None            | None         |
| insulation displacement contacts          |                |                 |              |
| Full mating and mating stability          | 95             | None            | None         |
| Plating hole integrity                    | 96 (P)         | None            | None         |
| Housing panel retention                   | 97             | None            | None         |
| Housing locking mechanism strength        | 98             | None            | None         |
| Gage location and retention               | 99             | None            | 2018         |
| Marking permeability                      | 100            | None            | None         |
| Attenuation                               | 101            | 25b (P)         | None         |
| Rise time degradation                     | 102            | 25c (P)         | None         |
| Propagation delay                         | 103            | 25d (P)         | None         |
| Flammability                              | 104            | None            | 1012         |
| Altitude – low temperature                | 105            | None            | 1011         |
| Standing wave ratio (SWR)                 | 106            | None            | 3005         |
| Eye pattern                               | 107            | None            | None         |
| Impedance, reflection coefficient, return | 108            | 25e (P)         | None         |
| loss, and VSWR                            |                |                 |              |
| Inductance (1 nH - 10 nH)                 | 109 (P)        | None            | None         |
| Environmental test methodology for        | 1000.01        | None            | None         |
| assessing the performance of electrical   |                |                 |              |
| connectors and sockets used in business   |                |                 |              |
| office applications                       |                |                 |              |
| NOTES                                     |                |                 |              |
|                                           |                |                 |              |

#### Table A.1 – EIA-364, IEC-512 and MIL-STD-1344 cross-reference (continued)

1 An asterisks (\*) indicates that there are known differences between the EIA and IEC test procedures.

2 A (P) indicates that the EIA test procedure has been proposed or is under development.

# **B** Test comparison expanded cross-reference EIA-364 and MIL-STD-1344 (informative)

|                | <u>le B.1 – EIA-364 to MIL-ST</u><br>EIA-364 |               | L-STD-1344              |
|----------------|----------------------------------------------|---------------|-------------------------|
| Test procedure | Condition <sup>1)</sup>                      | Test method   | Condition <sup>1)</sup> |
| 001A           | Condition A                                  | 2011.1        | Condition A             |
| 001A           | Condition B                                  | 2011.1        | Condition B             |
| 001A           | Condition C                                  | 2011.1        | Condition C             |
| 001A           | Condition D                                  | 2011.1        | Condition D             |
| 002C           | Direct                                       | 1008          | Direct                  |
| 003B           | Direct                                       | 1004.1        | Direct                  |
| 005B           | Direct                                       | 2012.1        | Direct                  |
| 006A           |                                              | 3004.1        |                         |
| 007B           | Condition A                                  | 2001.1        | Condition A             |
| 007B           | Condition B                                  | 2001.1        | Condition B             |
| 007B           | Condition C                                  | 2001.1        | Condition C             |
| 007B           | Condition D                                  | 2001.1        | Condition D             |
| 008B           | Direct                                       | 2003.1        | Direct                  |
| 009C           | Direct                                       | 2016          | Direct                  |
| 010            | -                                            | 1016          | Condition K (Deleted)   |
| 010            | Condition A                                  | 1016          | Condition A             |
| 010            | Condition B                                  | 1016          | Condition C             |
| 010            | Condition C                                  | 1016          | Condition D             |
| 010            | Condition D                                  | 1016          | Condition E             |
| 010            | Condition E                                  | 1016          | Condition F             |
| 010            | Condition F                                  | 1016          | Condition G             |
| 010            | Condition G                                  | 1016          | Condition H             |
| 010            | Condition H                                  | 1016          | -                       |
| 010            | Condition I                                  | 1016          | Condition I             |
| 010            | Condition J (Deleted)                        | 1016          | Condition J (Deleted)   |
| 010            | Condition K                                  | 1016 Notice 5 | Condition J             |
| 010            | Condition K                                  | 1016          | Condition L             |
| 010            | Condition L                                  | 1016          | Condition B             |
| 010            | Condition Z                                  | 1016          | -                       |
| 013B           | Direct                                       | 2013.1        | Direct                  |
| 014B           | Direct                                       | 1007.1        | Direct                  |
| 017B           | Condition 1                                  | 1005.1        | Condition 1             |
| 017B           | Condition 10                                 | 1005.1        | -                       |

Table B.1 – EIA-364 to MIL-STD-1344 expanded cross-reference

EIA-364-D Page B-2

| EIA-364        |                         | · ·         | L-STD-1344              |
|----------------|-------------------------|-------------|-------------------------|
| Test procedure | Condition <sup>1)</sup> | Test method | Condition <sup>1)</sup> |
| 017B           | Condition 11            | 1005.1      | -                       |
| 017B           | Condition 2             | 1005.1      | Condition 2             |
| 017B           | Condition 3             | 1005.1      | Condition 3             |
| 017B           | Condition 4             | 1005.1      | Condition 4             |
| 017B           | Condition 5             | 1005.1      | Condition 5             |
| 017B           | Condition 6             | 1005.1      | Condition 6             |
| 017B           | Condition 7             | 1005.1      | Condition 7             |
| 017B           | Condition 8             | 1005.1      | Condition 8             |
| 017B           | Condition 9             | 1005.1      | Condition 9             |
| 017B           | Method A                | 1005.1      | -                       |
| 017B           | Method B                | 1005.1      | -                       |
| 017B           | Method C                | 1005.1      | Direct                  |
| 017B           | Test time condition A   | 1005.1      | Test time condition A   |
| 017B           | Test time condition B   | 1005.1      | Test time condition B   |
| 017B           | Test time condition C   | 1005.1      | Test time condition C   |
| 017B           | Test time condition D   | 1005.1      | Test time condition D   |
| 017B           | Test time condition E   | 1005.1      | Test time condition E   |
| 017B           | Test time condition F   | 1005.1      | Test time condition F   |
| 017B           | Test time condition G   | 1005.1      | Test time condition G   |
| 017B           | Test time condition H   | 1005.1      | Test time condition H   |
| 020B           | Condition I             | 3001.1      | Condition I             |
| 020B           | Condition II            | 3001.1      | Condition II            |
| 020B           | Condition III           | 3001.1      | Condition III           |
| 020B           | Condition IV            | 3001.1      | Condition IV            |
| 020B           | Condition V             | 3001.1      | Condition V             |
| 020B           | Condition VI            | 3001.1      | Condition VI            |
| 020B           | Condition VII           | 3001.1      | -                       |
| 020B           | Condition VIII          | 3001.1      | -                       |
| 020B           | Method A                | 3001.1      | Need to specify         |
| 020B           | Method B                | 3001.1      | Need to specify         |
| 020B           | Method C                | 3001.1      | Need to specify         |
| 020B           | Method D                | 3001.1      | Need to specify         |
| 021B           | Direct                  | 3003.1      | Direct                  |
| 022A           | Level I                 | 1015        | Level I                 |
| 022A           | Level II                | 1015        | Level II                |

 Table B.1 – EIA-364 to MIL-STD-1344 expanded cross-reference (continued)

| EIA-364        |                         |             | ·STD-1344               |
|----------------|-------------------------|-------------|-------------------------|
| Test procedure | Condition <sup>1)</sup> | Test method | Condition <sup>1)</sup> |
| 022A           | Level III               | 1015        | Level III               |
| 022A           | Level IV                | 1015        | Level IV                |
| 022A           | Limit I                 | 1015        | Limit I                 |
| 022A           | Limit II                | 1015        | Limit II                |
| 022A           | Limit III               | 1015        | Limit III               |
| 022A           | Limit IV                | 1015        | Limit IV                |
| 023A           | -                       | 3002.1      | -                       |
| 024B           | Direct                  | 2002.1      | Direct                  |
| 025C           | Direct                  | 2006.2      | Direct                  |
| 026A           | Condition A             | 1001.1      | Condition A             |
| 026A           | Condition B             | 1001.1      | Condition B             |
| 026A           | Condition C             | 1001.1      | Condition C             |
| 026A           | Condition D             | 1001.1      | Condition D             |
| 027B           | Condition A             | 2004.1      | Condition A             |
| 027B           | Condition B             | 2004.1      | Condition B             |
| 027B           | Condition C             | 2004.1      | Condition C             |
| 027B           | Condition D             | 2004.1      | Condition D             |
| 027B           | Condition E             | 2004.1      | Condition E             |
| 027B           | Condition F             | 2004.1      | Condition F             |
| 027B           | Condition G             | 2004.1      | Condition G             |
| 027B           | Condition H             | 2004.1      | Condition H             |
| 027B           | Condition I             | 2004.1      | Condition I             |
| 027B           | Condition J             | 2004.1      | -                       |
| 027B           | Condition K             | 2004.1      | -                       |
| 027B           | Condition L             | 2004.1      | -                       |
| 028D           | Condition I             | 2005.1      | Condition I             |
| 028D           | Condition II            | 2005.1      | Condition II            |
| 028D           | Condition III           | 2005.1      | Condition III           |
| 028D           | Condition IV            | 2005.1      | Condition IV            |
| 028D           | Condition V             | 2005.1      | Condition V             |
| 028D           | Condition VI            | 2005.1      | Condition VI            |
| 028D           | Condition VII           | 2005.1      | -                       |
| 029B           | Direct                  | 2007.1      | Direct                  |
| 031A           | Condition A             | 1002.2      | Condition A             |
| 031A           | Condition B             | 1002.2      | Condition B             |
| 031A           | Condition C             | 1002.2      | Condition C             |

 Table B.1 – EIA-364 to MIL-STD-1344 expanded cross-reference (continued)

EIA-364-D Page B-4

| EIA-364        |                         |             | -STD-1344               |
|----------------|-------------------------|-------------|-------------------------|
| Test procedure | Condition <sup>1)</sup> | Test method | Condition <sup>1)</sup> |
| 031A           | Condition D             | 1002.2      | Condition D             |
| 031A           | Method I                | 1002.2      | -                       |
| 031A           | Method II               | 1002.2      | Type I                  |
| 031A           | Method III              | 1002.2      | -                       |
| 031A           | Method IV               | 1002.2      | Type II                 |
| 031A           | Method V                | 1002.2      | Type III                |
| 032B           | Condition I, 100 cycles | 1003.1      | Condition A-3           |
| 032B           | Condition I, 25 cycles  | 1003.1      | Condition A-1           |
| 032B           | Condition I, 5 cycles   | 1003.1      | Condition A             |
| 032B           | Condition I, 50 cycles  | 1003.1      | Condition A-2           |
| 032B           | Condition II            | 1003.1      | -                       |
| 032B           | Condition III           | 1003.1      | -                       |
| 032B           | Condition IV            | 1003.1      | _                       |
| 032B           | Condition V             | 1003.1      | -                       |
| 032B           | Condition VI            | 1003.1      | -                       |
| 032B           | Condition VII           | 1003.1      | -                       |
| 032B           | Condition VIII          | 1003.1      | -                       |
| 035B           | Direct                  | 2010.1      | Direct                  |
| 037B           | Direct                  | 2014        | Direct                  |
| 038B           | Condition A             | 2009.1      | Condition B             |
| 038B           | Condition B             | 2009.1      | Condition C             |
| 038B           | Condition C             | 2009.1      | Condition D             |
| 038B           | Condition D             | 2009.1      | Condition E             |
| 038B           | Condition E             | 2009.1      | Condition A             |
| 039B           | Condition A             | 1006.1      | Condition A             |
| 039B           | Condition B             | 1006.1      | Condition B             |
| 039B           | Condition C             | 1006.1      | Condition C             |
| 039B           | Condition D             | 1006.1      | Condition D             |
| 039B           | Procedure 1             | 1006.1      | Procedure 1             |
| 039B           | Procedure 2             | 1006.1      | Procedure 2             |
| 039B           | Procedure 3             | 1006.1      | Procedure 3             |
| 040B           | Direct                  | 2008.1      | Direct                  |
| 041C           | Procedure I             | 2017        | Condition I             |
| 041C           | Procedure II            | 2017        | Condition II            |
| 042B           | Direct                  | 2015        | Direct                  |
| 045            | Direct                  | 1009        | Direct                  |

 Table B.1 – EIA-364 to MIL-STD-1344 expanded cross-reference (continued)

| EIA-364                                                                                 |                         | MI          | L-STD-1344              |
|-----------------------------------------------------------------------------------------|-------------------------|-------------|-------------------------|
| Test procedure                                                                          | Condition <sup>1)</sup> | Test method | Condition <sup>1)</sup> |
| 053A                                                                                    | Direct                  | 1017        | Direct                  |
| 054A                                                                                    | Direct                  | 3006        | Direct                  |
| 066                                                                                     | -                       | 3008        | _                       |
| 071A                                                                                    | Direct                  | 2019        | Direct                  |
| 083                                                                                     | Direct                  | 3007        | Direct                  |
| 099                                                                                     | Direct                  | 2018        | Direct                  |
| 104                                                                                     | Direct                  | 1012        | Direct                  |
| 105                                                                                     | Direct                  | 1011        | Direct                  |
| 106                                                                                     | Direct                  | 3005        | Direct                  |
| NOTE — Direct in the condition column means that the method in MIL-STD-1344 and         |                         |             |                         |
| EIA 364 are in harmony; and there are no sub methods, conditions, etc. in the document. |                         |             |                         |

 Table B.1 – EIA-364 to MIL-STD-1344 expanded cross-reference (continued)

#### **EIA Document Improvement Proposal**

If in the review or use of this document, a potential change is made evident for safety, health or technical reasons, please fill in the appropriate information below and mail or FAX to:

#### Electronic Industries Alliance Technology Strategy & Standards – Publications Office 2500 Wilson Blvd. Arlington, VA 22201 FAX: (703) 907-7501

| Document No.                                      | Document Title:                       |  |  |
|---------------------------------------------------|---------------------------------------|--|--|
| Submitter's Name:                                 | Telephone No.:<br>FAX No.:<br>e-mail: |  |  |
| Address:                                          |                                       |  |  |
| Urgency of Change:                                |                                       |  |  |
| Immediate: At no                                  | ext revision:                         |  |  |
| Problem Area:<br>a. Clause Number and/or Drawing: |                                       |  |  |
| b. Recommended Changes:                           |                                       |  |  |
| c. Reason/Rationale for Recommendation:           |                                       |  |  |
| Additional Remarks:                               |                                       |  |  |
| Signature:                                        | Date:                                 |  |  |
| FOR EIA USE ONLY<br>Responsible Committee:        |                                       |  |  |
| Chairman:                                         |                                       |  |  |
| Date comments forwarded to Committee Chairman:    |                                       |  |  |
| -                                                 |                                       |  |  |



中国可靠性网 http://www.kekaoxing.com