

Relex Studio 用户培训手册

——Team, Corporate 及 Enterprise 版

中国可靠性网

http://www.kekaoxing.com

北京运通恒达科技有限公司

邮编: 100089 电话: 010-82561200/1/2/3 传真: 010-82561204 Email:support@ytforever.com

目 录

第	1章 均	音训内容示例——故障树分析模块	1
	1.1. Relex	x Studio 故障树分析简介	1
	1.2. Relex	x 故障树分析应用实例 1	1
	1.2.1.	简介	1
	1.2.2.	Relex 应用过程	2
	1.3. 操作	练习	.7
	1.3.1.	练习 1	. 7
	1.3.2.	练习 2	8
	1.3.3.	练习 3	9
	110101		

第1章 培训内容示例——故障树分析模块

1.1. Relex Studio 故障树分析简介

Relex FTA 是 Relex 提供的故障树分析模块,使用图形化的建模方法,针对用户所关 心的系统故障(顶事件)问题进行逻辑推理分析,寻找能够导致其发生的全部事件的组 合;并根据用户可以确定其发生频率的故障原因(底事件)及其逻辑组合关系来定量计 算系统的可靠性参数。

Relex FTA 提供的主要功能包括:

- 故障树的建立
- 故障树静态分析
- 故障树动态计算
- 最小割集、最小路集的求解与计算
- 共因故障分析
- 底事件的重要度评估

在 Relex Studio 中进行故障树分析主要包括以下几个步骤:

- a) 创建一棵新的故障树;
- b) 定义故障树顶事件;
- c)构建故障树;
- d) 定义故障树中门和事件的计算属性;
- e) 定性分析及定量计算;
- a) 图形或报告输出。

注: 在使用故障树分析模块前,请首先确保您具有使用该模块的权限,且 Relex Studio 系统中有可用的授权供您使用。

1.2. Relex 故障树分析应用实例 1

- 1.2.1. 简介
 - 分析对象: 车载发射系统的指令发送任务
 - 分析目的:
 - ▶ 掌握 Relex 故障树应用过程

😿 Relex Studio 用户培训手册

- ▶ 针对"指令发送失败"建立故障树模型
- ▶ 定性和定量评价底事件

1.2.2. Relex 应用过程

- 打开或新建一个项目,确保其中包括**故障树**模块,使 Module Selection 工具条或 者点击图标 → 激活 故障树;
- 2. 在故障树表中定义故障树的顶事件为"指令发送失败";
- 参考 OpSim 中建立的车载发射系统的任务可靠性框图,如图 1-1 车载发射系统的 任务可靠性框图模型所示,使用菜单插入//J或事件建立故障树模型如图 1-2所 示;

图 1-1 车载发射系统的任务可靠性框图模型

漏 Relex Studio 用户培训手册

- 4. 为底事件设置故障属性,本例中设置各底事件均为不可修故障,其 MTBF 设置如下,
 - ▶ 主板: MTBF 为 10000 小时
 - ▶ 网卡1(2): MTBF为4000小时
 - ▶ 发射设备1(2): MTBF为5000小时

通过双击底事件/门,可以调用其属性定义,底事件的定义示例如图 1-3所示;

□ 通用	「「主板」	
〕计算数据		14 1
3 图形	■ 计算数据	
〕自定义属性		
□注释	逻辑条件	
	 ○ 正常(Ŋ) ○ 真 	C 假
	参数定义	
	 ① 用户自定义 ① CCF组 ◎ 库事件 ● 链接到组件, 器件, FMEA 或 Markov 数据 	•
	输入类型	
	 ご 恒定標率值 ご 故障率/MTBF ご が障率/MTBF ご 所率 ご 可能 故障 ○ 周期检测故障 	1000¢
	故障率百分比:	100.00
	作用时间百分比:	100.00
	重复 事件覆盖率%:	100

图 1-3 故障树底事件定义示例

5. 执行故障树计算,与 RBD 计算结果相比较,通过菜单*系统|计算*,调用计算设置,选中其中的*故障树*,并在*故障树一通用*页中设置时间和所选参数,如图 1-4 和图 1-5所示;

😿 Relex Studio 用户培训手册

计算		
	计算选项	
+ 🖬	FMEA	画 龙洋订昇模块
± 🗾	FRACAS	C C C C C C C C C C C C C C C C C C C
+ =	OpSim	FRACAS
	事件树	
	可靠性预计	
	威布尔	
+ =	寿命周期费用	□ ◎ 寿命周期费用
+ 📰	故障树	
	用户自定义	
	维修性	
Ŧ.	马尔可夫	全选 全不选
		▼

图 1-4 故障树计算选择

计算		
 □ 计算选项 ■ FMEA 	▲ 故障树计算选项	
 ■ ■ FRACAS ■ OpSim ■ 事件树 ■ 可靠性预计 ■ 威布尔 ■ 寿命周期费用 	 □ 仅定性分析 可靠度/可用度计算 时间起点: ● 持续时间: 1000 数据点数量: 21 	 ✓ 执行精确计算 计算开始于: ○ 顶门 → 当前门事件(当前页的顶事)
□ ○ 故障树 □ 通用 □ 高级	主要时间点: 1000 计算 ☑ 割集 ☑ 可靠性重要度	 ○ 当前门 争 (「(当前) (大日) (大日) (大日) (大日) (大日) (大日) (大日) (大日
 □ 用戶目定义 □ 维修性 □ 雪 马尔可夫 	 ○ 不可用度 ○ 不可集度 ○ 频率 ○ 数隆次数 忽略发生根率小于此数的割集: 忽略包含事件数目大于此值的割集: 	
T		
		<u>确定</u> 取消 帮助

图 1-5 故障树计算一通用设置

得到的计算结果如所示;

门的结里。	而事件			
任时间点 1000.00 不可告告 (2)	的结果:	++0+		
不可靠度(F); 不可用度(O);	0.21397982 0.21307082	飲厚(欠数) 頻率 (6)	NA 266 76529	5025
	0.21397902	23年(17)	200,7033.	JUZJ
时间	不可用度	不可靠度	频率	
0	0.000000	0.000000	100.000000	
50.00	0.005480	0.005480	118.932726	
100.00	0.011867	0.011867	136.296245	
150.00	0.019085	0.019085	152.184605	
200.00	0.027062	0.027062	166.686796	
250.00	0.035732	0.035732	179.887002	
300.00	0.045031	0.045031	191.864854	
350,00	0.054899	0.054899	202,695660	
400.00	0.065282	0.065282	212,450632	
450,00	0,076128	0.076128	221.197091	
500.00	0.087386	0.087386	228.998676	
550.00	0.099013	0.099013	235.915527	
600.00	0.110964	0.110964	242.004471	
650,00	0.123200	0.123200	247.319192	
700.00	0.135684	0.135684	251.910396	
750.00	0.148380	0.148380	255.825964	

图 1-6 车载发射系统-故障树计算结果

<提示:本案例建立的故障树模型与我们在 Relex RBD 建立的初始工作模型反应的可靠性逻辑关系完全相同,因此,计算结果完全一致(不可靠度)。>

 查看故障树割集,使用菜单 故障树 加亮最小割集来加亮显示割集,也可以通过 双击顶事件调出其属性页,从其中的割集页部分查看计算割集的分析结果,如图 1-7所示;

中国可靠性网

http://www.kekaoxing.com

🌃 Relex Studio 用户培训手册

	通用			1. 顶事件		
	计算数据					\rightarrow
1	输入		割隼			_/_
1	图形	1	11710			
1	白空义属性		櫉率			
	日起入商任	1	0.095163	主板: 0.0951626		
)	汪释	2	0.048929	网卡1: 0.2211992	网卡2: 0.2211992	
)	割集	3	0.040097	网卡2: 0.2211992	发射设备1:0.1812692	
	可贵性重要度评估	4	0.040097	网卡1:0.2211992	发射设备2: 0.1812692	
		5	0.032859	发射设备1:0.1812692	发射设备2:0.1812692	
			Excel	打印		
_						

图 1-7 车载发射系统-故障树的割集分析结果

 查看可靠性重要度计算结果,通过双击顶事件(或其他中间事件)调出其属性 页,从其中的*可靠性重要度评估*页部分查看分析结果,如图 1-8所示;

页亊件 属性							
□ 通用	顶事件						
□ 计算数据		/	1	5		1	
□ 输入		可靠性重	重要度评值	古			
□ 图形	T						
□ 自定义属性		事件	Birnbaum(概	关键重要度	Fussell-Vesely		
口计校	1	主板	1.0000000	0.3700759	0.3700759		
	2	发射设备1	0.4024685	0.2837138	0.2837138		
⊇ 割集	3	发射设备2	0.4024685	0.2837138	0.2837138		
] 可靠性重要度评估	4	网卡1	0.4024685	0.3462103	0.3462103		
				确注	記 取消		

图 1-8 车载发射系统-故障树的可靠性重要度计算结果

8. 图形输出,创建新的图形模板,将*培训用例文件夹*中 FTA 文件夹下的顶事件发生 概率.RGT 和门及事件的发生概率统计.RGT 两个文件复制到项目中;生成的图形 如图 1-9和图 1-10所示。

图 1-9 故障树分析图形输出 1

图 1-10 故障树分析图形输出 2

9. 输出报告。

创建新的报告设计,将培训用例文件夹中 FTA 文件夹下的 FTA 割集分析报告.RFR 文件复制到项目中;使用菜单文件打印预览进行报告查看。

- 1.3. 操作练习
- 1.3.1. 练习1
 - 简介:针对讲稿中的电梯示例进行故障树建模和分析
 - 目的: 练习故障树的建模和分析过程
 - 操作步骤:
 - ▶ 步骤一,针对所示原理图图 1-11确定故障树分析的顶事件为"厢内乘客受伤";

图 1-11 练习 1-电梯故障树分析原理图

图 1-12 练习 1-电梯厢内乘客受伤的 Relex 故障树模型

- ▶ 步骤三,针对"刹车失效"和"厢门无法关闭"练习故障树的拆分功能;
- ▶ 步骤四,将全部底事件的发生概率设为 0.01,进行 10000 小时内的定量计算;
- ▶ 步骤五,进行割集查看;
- ▶ 步骤六,评价全部底事件的重要度。
- 1.3.2. 练习2
 - 简介:针对故障树分析应用实例1
 - 目的: 练习使用 Relex 事件参数库来定义故障树的底事件
 - 操作步骤:
 - ▶ 步骤一,从*项目导航条*中创建文件,创建*故障树-事件参数库*;

😿 Relex Studio 用户培训手册

- ▶ 步骤二,在事件参数库中定义故障树分析应用实例1的各底事件参数;
- ▶ 步骤三,打开故障树分析应用实例 1,在故障树各底事件的属性中的*计算属* 性中选择使用事件参数进行定义;
- ▶ 步骤四,重新进行计算并比较结果。
- 1.3.3. 练习3
 - 简介:针对故障树分析应用实例1
 - 目的: 练习图形样式的定义, 使故障树计算后同时显示*不可用度*和频率

■ 操作步骤:

- ▶ 步骤一,从项目导航条中打开故障树图形样式;
- ▶ 步骤二,针对全部样式进行显示结果的定义,选择显示不可用度;
- ▶ 步骤三,关闭*故障树图形样式*,查看结果,如图 1-13所示。

图 1-13 练习 3-Relex 故障树图形样式定义